generators.utils.noises
Data - Generators - VAR¤
GaussianNoise
¤
1 D Gaussian noise
:param mu: mean of the Gaussian distribution :param std: standard deviation of the Gaussian distribution :param seed: seed of the RNG for reproducibility
Source code in eerily/generators/utils/noises.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
LogNormalNoise
¤
1 D lognormal noise
:param mu: mean of the Gaussian distribution :param std: standard deviation of the Gaussian distribution :param seed: seed of the RNG for reproducibility
Source code in eerily/generators/utils/noises.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
MultiGaussianNoise
¤
A multivariate Gaussian noise
To generate constants,
mge = MultiGaussianEpsilon(
mu=np.array([1,2]), cov=np.array([
[0, 0],
[0, 0]
])
)
To generate independent noises,
mge = MultiGaussianEpsilon(
mu=np.array([1,2]), cov=np.array([
[1, 0],
[0, 1]
])
)
:param mu: means of the variables :param cov: covariance of the variables :param seed: seed of the random number generator for reproducibility
Source code in eerily/generators/utils/noises.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|